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Big Data Era LAIViDA

Learning And Mining from DatA

O Machine learning needs and has to handle big data

Model Performance vs. Data Size Estimated Global Data Volume Growth (2010-2025)

0.8¢ ﬁ3°0‘

]

More data generally leads to better The global data volume is
performance—up to a point. growing exponentially.
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Big Data Era LAIViDA

Learning And Mining from DatA

O Why online learning is essential in the era of big data

> Big data arrives continuously.

Data isn’t static—it streams in every second.
Actions

: » Retraining from scratch is inefficient.
Environment

Batch learning can’t keep up with real-time needs.
Online Data

Learning . . .

Algorithm » Online learning enables real-time updates.

Models adapt on the fly with minimal delay.
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Formalization

Online Learning
Ateachroundt=1,2---,T

1. the learner first pick a point w; € W;

2. and simutaneously the environment picks
an online function|f; : W — [0, 1]|to
evaluate the model;

3. the learner then suffers loss f;(w;) and
observes some information of f;.

Example: online function f; : W — R is composition of
(i) the loss ¢ : J> x Y +— R, and
(ii) the hypothesis function h : W x X ).

—) fr(w) = L(h(w;xt),yt) = €<WTxtayt)

Universal Online Learning with Gradient Variations

LAVIDA

Learning And Mining from DatA

Example I: Spam filtering

|+
€ R4
> A classifier +/Vf_

7

An instance, feature x; € R%
Predict a label by w/lx,
Receive the true label y;

X

A loss function
fi(w) = max(1 — y,wTx,,0)
Suffer f;(w;) and update w;

Example II: Online recommandation

Data ‘ ‘
Online Serving Online Serving: Online Serving
9‘ Dl 9‘ D g g : D3

Train Train

Load ' Load

f@)o Paramete% f@1 Para meter; f®2

Period 0 } Period 1 3 Period 2
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Formalization LAIVIDA

Learning And Mining from DatA

0 Online Convex Optimization (OCO)

Ateachroundt=1,2,...,T":

- the learner submits an online model x; € X C R¢
- simutaneously, environments decide a convex loss function f; : X — R

- the learner suffers f;(x;) and receives gradient info. of the loss function

O Regret: Online prediction as good as the best offline model
. |

cumulative loss of best offline model
mm Z fe(x

T
A
REGT == z ft (Xt
i—1 cumulative loss of the online model

| ]
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Problem Setup LAVipA

Learning And Mining from DatA

O Universal Online Learning

exp-concave

convex

Online learning usually considers three kinds of curvatures:
- comvex: f(x) - f(y) < (Vf(x),x —y) forany x,y € X.
- A-strongly convex: f(x) — f(y) < (Vf(x),x —y) — 3x = y|%
- a-exp-concave: f(x) — f(y) < (VS(x),x — y) = ${VF(x),x ~y)*
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Problem Setup

LAVIDA

Learning And Mining from DatA

O Universal Online Learning

T T
REGy £ Z fe(xy) — )I{Iél{IYI Z fe(x)
t=1 t=1

In OCO, the type of functional curvature plays an important
role in the best attainable regret bounds.

Function type Algorithm Regret
convex Online Gradient Descent with 7, ~ % O(T)
A\-strongly convex | Online Gradient Descent with 7, = 5, | O(5 - logT)
a-exp-concave Online Newton Step with a O(+ -dlogT)
Universal Online Learning with Gradient Variations

Yu-Hu Yan (Nanjing University) 7



Problem Setup LAVipA

Learning And Mining from DatA

O Universal Online Learning
T T
REGy = Z fe(x¢) — )I{Iél{IYIZ fe(x)
t=1 t=1

In OCO, the type of functional curvature plays an important
role in the best attainable regret bounds.

Common algorithm is only suitable for one specific curvature type.

What if the curvature type (and coefficient) is unknown?

In this talk, we focus on universal online learning, where the curvature is unknown.
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Problem Setup

O Universal Online Learning

REG7 (A, {fi}i-1)

LAVIDA

Learning And Mining from DatA

T
éth(Xt mlﬂth
t=1

In this talk, we focus on universal online learning, where the curvature is unknown.

REGT (A, {fi}i1) =

\

Universal Regret Minimization

(REGT(Ase, F2),

REGT(AeC: ec)
REGT(.AC, .FC),

when {f;}L_, belongs to F_

SC?

when {f,}1_, belongs to F&

ec?

when {f;}/_, belongs to F,

Universal Online Learning with Gradient Variations
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Problem Setup LAVipA

Learning And Mining from DatA

O Problem-dependent regret

- Regret measured by T only considers the worst-case scenarios.

- Can we exploit the niceness of environments for improved result?

1000

Gradient variation:
T

VT £ Z sup ”Vft(X) — Vft_l(X)Hz oo

—o xeX 200k

800

o(T)

: .. ) : O(V-
cumulative variations in gradients, (V)

reflecting the difficulty of online problems

0 L ‘ T

0 200 400 600 800 1000

The regret bounds can be strengthened to O(3 log Vi), O(£ log Vi), and O(v/Vr).
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Problem Setup

Gradient variation:
T

Ve 23 sup [Vfi(x) — Vi ()]

t=2 xeX

cumulative variations in gradients,

O Why do we study gradient variation? reflecting the difficulty of online problems.

(i) Gradient variation implies other problem-dependent quantities directly in analysis.

e.g.,

Small-loss term:

cumulative loss of the best model

Gmdient—variance term:

U= Z sup

xEX

Vi(x) = = Zw;

variance of grad/ents

(11) Gradient variation can bridge stochastic and adversarial online optimization.

E [Sachs et al., Between stochastic and adversarial online convex optimization: Improved regret bounds via smoothness, NeurIPS 2022]

(1i1) Gradient variation in achieving fast rates in games.

= [Syrgkanis et al., Fast convergence of regularized learning in games, NIPS 2015 (Best Paper Award)]

Universal Online Learning with Gradient Variations
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Universal Regret Minimization

A General Framework REGy(Ase, 72), when {/,}7_, belongs to 72,

REGT(A, {f;11,) = { REGr(Aec, F&),  when {fi}{_; belongs to Fg,
REGy(Ac, Fo),  when {f,;}]_, belongs to F.,

D Online Ensemble [Zhao-Zhang-Zhang-Zhou, JMLR 2024]

General goal: To handle the uncertainty of environments.

Base Learners

for convex function for exp-concave function  for strongly convex function

» Base learners guess the curvature (str-convex/exp-concave/cvx).

» Meta learner tracks the best base learner.
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Main Result LAVIDA

Learning And Mining from DatA

D OUI' fiI'St WOI'k [Yan-Zhao-Zhou, NeurIPS 2023]

A single algorithm with near-optimal universal gradient-variation regret.

Theorem 1. Under standard assumptions, our algorithm ensures that

r O(5 -log V),  when {fi}i—, are A-strongly convex,
REG7(A, {f;}L,) < ¢ O(é -dlog Vi), when {f;}}_, are a-exp-concave,

O(/Vrlog V), when {f;}1_, are convex.

\
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Main Result LAVIDA

Learning And Mining from DatA

D OUI' SeCOHd WOI‘k [Yan-Zhao-Zhou, NeurIPS 2024]

A single algorithm with the optimal universal gradient-variation regret.

Theorem 2. Under standard assumptions, our algorithm ensures that

log Vir),  when {fi}]_, are \-strongly convex,

REGr(A, {f;}L ) <! O(+ -dlog V), when {f;};_, are a-exp-concave,

O Vr), when { f; }1_, are convex.
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Main Result

O Comparison of two works

LAVIDA

Learning And Mining from DatA

Regret Bounds
Works RVU
strongly convex exp-concave convex
Our NeurIPS’23 log Vi dlog Vi V' Virlog Vi v
Our NeurIPS'24 log Vir dlog Vp VvV X
Remarks:

» NeurIPS’23 enjoys the RVU property, which is essential in game theory.

» NeurIPS’24 enjoys the optimal theoretical guarantees.

Universal Online Learning with Gradient Variations
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Application-I

O Two-Player Zero-Sum Game

LAVIDA

Learning And Mining from DatA

_—

x-player decision X; =

VE
VE
VE

y-player decision y, = (1/,1/, 0)T

Game matrix A4

Rock | Scissors | Paper

Rock | (0,0) | (1,—-1) | (—1,1)

Scissors | (—1,1)| (0,0) (-1,1)
Paper |(1,—-1)| (—1,1) (0,0)

Universal Online Learning with Gradient Variations
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Application-I LAIVIDA

Learning And Mining from DatA

O Two-Player Zero-Sum Game

Online Game Protocol (Repeated Play)

The environments decide a payoff matrix A

Ateachroundt=1,2,...,T":
- x-player submits x; € A; and y-player submits y; € Ay

- the z-player suffers loss x, Ay; and receives gradient Ay;, the y-player
receives reward x,' Ay, and receives gradient Ax;,

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 17



Application-I LAIViDA

Learning And Mining from DatA

O RVU property is essential for fast rates in games isyrgkanis etal, NIPs 2015 (Best Paper)]

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains:

T T
Reg; S 1+ Z |Ay: — Ayi-1ll3 — Z Ix: — %113
t=2

A
i (x) = x " Ay, 4 t=2 _ . -
gradient variation_ _negative stability

N\ Z

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

T T
Regh S 1+ lIxfA—x/1A1% =) llye — ye-1l
t=2

Y A
1Y) = x4, Ay — . .y . )
gradient variation negative stability

—> Reg . + Reg?. < O(1)
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Application-I LAIViDA

Learning And Mining from DatA

Deploying gradient-variation algorithm (e.g., online mirror descent with last-round gradient) attains:

T T
[ (x) = x' Ay,
t Regh <1+ [lAy: — Ayec1lZ = lIxe — x|
fE(x)2x" Ay, t=2 =2

gradient variation_ ﬂnegative stability

N\ Z

Deploying gradient-variation algorithm (e.g., online mirror descent Mt—round gradient) attains:

T T
Regh S 1+ lIxfA—x/1A1% =) llye — ye-1l
t=2

AN
1Y) =x¢_1 Ay t=2 . o . -
gradient variation negative stability

—> Reg.. + Reg?. < O(1)

Regret summation is usually related to some global performance measures
in games, such as Nash equilibrium regret and duality gap.
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Application-I LAIViDA

Learning And Mining from DatA

O Min-Max Optimization

min ma X
min max f(x,y)

Consider two aspects:

(i) curvatures: f is either bilinear or strongly convex-concave (but unknown)

(i1) honest: all players run the same algo; dishonest: someone may disobey

- Strongly-Convex-Strongly-Concave

Honest O0(1) reg sum O0(1) reg sum due to gradient variation
Dishonest O/ TlogT) O(logT) due to universality
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Application-II LAIVIDA

Learning And Mining from DatA

O Stochastically Extended Adversarial (SEA) [sachs et al, NeurlPs 2022

stochastic convex opt.

How loss function

ft is generated?

adversarial convex opt.

> Setup: f;is chosen from a distribution F;: f; ~ F;
F} is the expected function of F;: F;(-) = Er, w7, [f:(*)]

Vi (%) =V fio1(x) = [V i (%) =VE(X)|+[VF (%) = VF 1 (%) [ +[VF 1 (%) =V fi-1(x)]

stochastic variation adversarial variation stochastic variation

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 21



LAVIDA

Application-II AlV

O Stochastically Extended Adversarial (SEA) [Sachs et al., NeurIPS 2022

T T
» Formalization: -2, 2 > maxE 5 V() -VE), Sty 2E [Z sup IV E,(x) — VFtl(x)Hzl
t=1 t=2%

(stochastic variation) (adversarial variation)

Theorem 5. Under boundedness and smoothness of F(-) for any t € |T'|, our approach ensures

2 2
(O (% (02, +2%2 )ln (;LTj:gé:T )), when {F;}]_, are \-strongly-cox,

max

O (L -dn(o?.r +217)), when { f; YL, are a-exp-concave,

O (\/O-%:T + 2%:T)’
\

Matching the state-of-the-art results attainable when knowing curvature information.
Yu-Hu Yan (Nanjing University) 22
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Xt = Z pt,iXt; Meta Learner
i1€[N]

General Analysis o6 e

Base Learners

for convex function for exp-concave function  for strongly convex function

O Meta-base regret decomposition:

T T T
REGy = Z ft(xt) — Z ft(Xt,z'*) Z ft(xt,z mm Z ft
t=1 t=1 t=1

meta regret base regret

i" represents the best base learner (right guess of curvature type and coefficient)

Intuitively,

» Base regret measures the regret of the best base learner (the best achievable result).

» Meta regret measures the algorithm’s ability to track the best base learner.
P.S.: Meta learner does not need to know which base learner is the best.
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Xt = Z pt,iXt; Meta Learner

General Analysis 00 90.6) novn

for convex function for exp-concave function  for strongly convex function

O Meta-base regret decomposition:

T T T
REGT = [Z fi(xt) — th(xt,v:*) th(xt,z mmzft
t=1 t=1 t=1

meta regret base regret

Optimizing meta regret as Prediction with Expert Advice (PEA) problem:

T
Z ft Xt
t=1

IIMH
fﬁ
||
M'ﬂ
=h

/\
i[]=
;;

\::/
M
tﬁ
i’ﬁ
|/\
E
INg
b
%ﬁ
i’ﬁ
?’1
}?

T
— Z<£t’pt> — ly by defining £, ; = fi(x;;)
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_ Xt = Z ptiX:,; Meta Learner
i€[N]
o
,,,,,,,,,,,,,,,,,,, N
Te Chnlcal Challenge | Q Q O : Base Learners
% a2 - an | AL Az e A
L for convex function for exp-concave function for strongly convex function

O How to obtain gradient-variation regret?

What we want: V7 = 22‘;2 SUDsee v ||V (%) = V fi—1 (%7
What we have: Vi = ZZ;Q IV fe(x¢) — V fro1(xe1)||?

Two technical routines - I:

Ve S IV fi(xe) = Vi ima(x) 12+ D IV feor(xe) = Ver(xe-1)1* S Vo + Lzz [ 1

t=2 t=2 t=2

Challenge: x; = > . Dt.iXt; is a weighted combination. Thus controlling
X — X¢—1 requires the collaboration of meta and base learners.

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 25



_ Xt = Z ptiX:,; Meta Learner
i€[N]
®
7777777777 ! T~ o~
TeChnlcal Challenge | O Q O | Base Learners
(L2 02 - on | (AL Az o A
for convex function for exp-concave function  for strongly convex function

O How to obtain gradient-variation regret?

Two technical routines - I:

T T
Vr < Z IV fi(x:) = V froa (x0) |12 + Z IV feo1(x:) = Vioa (o) 1P S Vo + L2Z Ix¢ — x¢—1]|?

t=2

Challenge: x; = > .\ DtiXt; is a weighted combination. Thus controlling
x; — X¢—1 requires the collaboration of meta and base learners.

Decomposition: (zhaoetal, JMLR2024]

|x¢ — x¢— 1||2 Py — Py 1||1
<N

meta stability weighted combination of base stability

Controlling the weighted stability requires meta-base collaboration.
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Xt = Z ptiXt,i Meta Learner
i€[N]

TeChnical Challenge | [QQO\: Base Learners

for convex function for exp-concave function  for strongly convex function

O How to obtain gradient-variation regret?

Collaborative online ensemble: (zhaoetal, MLR 2024

Ixe = xe—1ll3 S Py — Pl + ) prallxes — xi—1.ll3
i<N

meta stability weighted combination of base stability

- meta stability: handled by negative terms in meta regret
- weighted stability: collaboration among layers, penalizing unstable base learners

T

T
Z(EtJrct,pt—ei*)gX :>Z<£tapt_ ) < X ZZM;G;—FZCM*

t=1 t=1 t=1 1=1

Intuition: Add corrections in the meta loss to punish less stable base learners.

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 27



Base Learners

Technical Challenge

for convex function for exp-concave function  for strongly convex function

O How to obtain gradient-variation regret?
What we want: V; = 22‘;2 SUDye v ||V Fi(x) = Vo1 (x)|]?

What we have: Vi = Z?:z IV fe(x¢) — V fro1(xe1)||?

Two technical routines - I1:

A tighter upper bound for squared gradient change:

Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). f(-) is L-smooth over R? if and
only if |V [(x) — V[(y)||? < 2LD;(y,x) for any x,y € R%.

y X

tighter than |V f;(x) — V f,(y)[|* < L?|x — y||* by the smoothness assumption Bregman divergence

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 28



Xy = Z ptiX:,; Meta Learner
i€[N]

TeChnical Challenge |1'.'_'.\ QQO\: Base Learners

for convex function for exp-concave function  for strongly convex function

O How to obtain gradient-variation regret?

What we want: V7 = 22‘;2 SUDsee v ||V (%) = V fi—1 (%7
What we have: Vi = ZZ;Q IV fe(x¢) — V fro1(xe1)||?

Two technical routines - II: |Definition 1 (Theorem 2.1.5 of (Nesterov, 2018)). f(-) is L-smooth over R? if and
only if |V f(x) — V[(y)||? < 2LD;(y,x) forany x,y € R?,

T
Ve S ) (IVfe(xe) = VAP + [V Fo(x") = Va1 + IV Fem1(x7) = V fma (xe-1) )

T
LZth(x , X4 —i—VT—I—LZth (x* x4 <2LZth (x*,x¢) + Vo,
t=2 t=2 t=1

Universal Online Learning with Gradient Variations Yu-Hu Yan (Nanjing University) 29



Xy = Z ptiX:,; Meta Learner
i€[N]

TeChnical Challenge |1 QQO\: Base Learners

for convex function for exp-concave function  for strongly convex function

O How to obtain gradient-variation regret?

Two technical routines - II:

Vr 5 Z IV fe(xe) = V()P + VAT = Vot )+ [V femr (x7) = Vi1 (xe-1) %)
t=2

/m

i
LZth(x Xy +VT+LZth (xT, X1 <2LZth x*,x¢) + Vr,
t=2 t=2 t=1

T T
Solution: Z fe(xy) — Z V fiu(xe), x¢ —x5)— prt (x*,x;) (algorithm-independent!)
— t=1

HMFH
—_
b

Bregman divergence can be seen as compensation from linearization.
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Summary LAIViDA

Learning And Mining from DatA

[ Problem: universal online learning with gradient variations
[0 General framework: online ensemble with adaptivity

[ Applications: optimization and online games

[ General analysis: meta-base regret decomposition

0 Two approaches: correction-based/Bregman-div. based cancellation

Universal online learning with gradient variations: A multi-layer online ensemble approach, NeurIPS'23 (Spotlight) Th a nk S ’
[}

A simple and optimal approach for universal online learning with gradient variations, NeurIPS'24
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